Lecture 28 IEEE 1149.1 JTAG Boundary Scan Standard

- Motivation
- Bed-of-nails tester
- System view of boundary scan hardware
- Elementary scan cell
- Test Access Port (TAP) controller
- Boundary scan instructions
- Summary

Purpose of Standard

- Lets test instructions and test data be serially fed into a *component-under-test* (CUT)
 - Allows reading out of test results
 - Allows *RUNBIST* command as an instruction
 Too many shifts to shift in external tests
- JTAG can operate at chip, PCB, & system levels
- Allows control of tri-state signals during testing
- Lets other chips collect responses from CUT
- Lets system interconnect be tested separately from components
- Lets components be tested separately from wires

Boundary Scan Chain View

Independent Path Board / MCM Scan

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

CLAMP Instruction

- Purpose: Forces component output signals to be driven by boundary-scan register
- Bypasses the boundary scan chain by using the one-bit Bypass Register
- Optional instruction
- May have to add RESET hardware to control on-chip logic so that it does not get damaged (by shorting 0's and 1's onto an internal bus, etc.)

Device ID Register --JEDEC Code

MSB						LSB
31	28	27	12	11	1	0
Vers	ion	Pa	nrt	Manufactu	irer	'1 '
		Nun	nber	Identity	7	
(4 bi	ts)	(16	bits)	(11 bits)	(1 bit)
•	-					

Optional / Required Instructions			
Instruction	Status		
BYPASS	Mandatory		
CLAMP	Optional		
EXTEST	Mandatory		
HIGHZ	Optional		
IDCODE	Optional		
INTEST	Optional		
RUNBIST	Optional		
SAMPLE PRELOAD	Mandatory		
USEDCODE	Ontional		

Lecture 30 IEEE 1149.4 JTAG Analog Test Access Port and Standard

- Motivation
- Bus overview
- Hardware faults
- Test Bus Interface Circuit (TBIC)
- Analog Boundary Module (ABM)
- Instructions
- Specialized Bus Circuits
- Summary

April 20, 2001

Purpose of Analog JTAG Standard

- For a *System-on-a-Chip* (SOC):
 - Cannot assume that we are interconnecting pre-tested modules
 - Internal module probing is impractical
 - Solution: Use boundary scan structure to partition analog, digital, and memory subsystems in SOC and test each separately
- Analog JTAG test capability:
 - Oriented towards measuring external component values or internal impedances (shorts, opens, wrong components)
 - Not intended for DSP type analog tests

Analog Test Bus

PROs:

- Usable with digital JTAG boundary scan
- Adds analog testability both controllability and observability
- Eliminates large area needed for analog test points
- CONs:
 - May have a 5 % measurement error
 - C-switch sampling devices couple all probe points capacitively, even with test bus off – requires more elaborate (larger) switches
 - Stringent limit on how far data can move through the bus before it must be digitized to retain accuracy

Analog Defects and Faults

Need for Discrete Components

- Impedance matching of transmission lines necessary – merchant ICs will not have built-in impedance matching resistances
- Discrete resistors use much power may prevent them from being on-chip
- Impossible to make high-valued, accurate inductors or transformers on chip
- Integrated R, C, L components are never as precise as external ones
- Some ICs can be extended to more functions if external *R*, *C*, or *L* value can be changed

April 20, 2001

Measurement Limitations with 1149.4

- Must test device with power on
- Multiplexing done with silicon devices, not relays
- Introduces unwanted impedances during testing
- Has additional current leakages to ground
- CMOS silicon switches non-linear over larger signal swings – may also be slow
- 1149.4 bus has less than 1 MHz bandwidth

Switch Limitations						
Parameter	Relay	CMOS	Bipolar			
On-resistance	10 ⁻² Ω	10^2 to $10^3 \Omega$	Varies			
Off-resistance	10 ¹² Ω	10 ¹² Ω	10 ¹⁰ Ω			
Bidirectional ?	Yes	Yes	No			
Switching time	\geq 500 μ s	< 1 μs	< 1 μs			
Area μm ²	96.7 x 10 ⁶	20	100 to 5000			
April 20, 2001			41			

TBIC Switching Patterns					
	P	Function			
	#				
Switch	0	ATn disconnect (high	Z), clamp <i>ABn</i>		
state	1	Connect AT2 & AB2	<i>P1 – P3</i>		
<i>\$1-\$10</i>	2	Connect AT1 & AB1	for analog		
for	3	Connect ATn & ABn	measurement		
patterns	4	<i>AT1 / 2</i> drive 00 out	PO & P4		
given	5	<i>AT1 / 2</i> drive 01 out	P7 for 1149.1		
in	6	<i>AT1 / 2</i> drive 10 out	interconnect		
book	7	AT1 / 2 drive 11 out	test		
	8	For characterization			
	9	For characterization			
April 20, 2001			46		

Analog Boundary Module Has Four Control Cells

- Work in conjunction with TBIC and various 1149.4 bus modes to set state for one analog pin:
 - Calibrate (Ca)
 - Control (Co)
 - Data1 (D1)
 - Data2 (D2)
- Test mode determined by 4 ABM digital pins and by TBIC switches *S1-S10*

ABM Switch Patterns				
	Pattern #	Pin State		
	0	Completely isolated		
	1	Monitored (mon.) by AB2		
	2	Connected (conn.) to AB1		
SD. SH.	3	Conn. to <i>AB1</i> , mon. by <i>AB2</i>		
SI SC	4	Connected to VG		
	5	Conn. to VG, mon. by AB2		
SB1, SB2	6	Conn. to VG & AB1		
Switch	7	Conn. to VTG & AB1, mon. by AB2		
states	8	Conn. to VL		
for the	9	Conn. to VL, mon. by AB2		
	10	Conn. to VL & AB1		
pattern	11	Conn. to VL & AB1, mon. by AB2		
given in	12	Conn. to VH		
book	13	Conn. to VH, mon. by AB2		
	14	Conn. to VH & AB1		
	15	Conn. to VH & AB1, mon. by AB2		
	16	Conn. to core, isolated from test		
	17	Conn. to core, mon. by AB2		
	18	Conn. to core & AB1		
	19	Conn. to core & AB1, mon. by AB2		
April 20, 2001 VLSI Test: Bushnell-Agrawal/Lecture 30 44				

BIC	Patte	rns	& A	BM Value
4 Cells	EXTEST	PROBE	HIGHZ	BYPASS, SAMPLE
	CLAMP	INTEST		PRELOAD, IDCODE
	RUNBIST			USERCODE
0000	P0	P0	P0	PO
0001	P1	P1	P0	PO
0010	P2	P2	P0	PO
0011	P3	P3	P0	PO
0100	P4	*	P0	PO
0101	P5	*	P0	PO
0110	P6	*	P0	PO
0111	P7	*	P0	PO
1000	P0	*	P0	PO
1001	P8	*	P0	PO
1010	P9	*	P0	PO
1011	*	*	P0	PO
1100	*	*	P0	PO
1101	*	*	P0	PO
1110	*	*	P 0	PO
1111	*	*	P0	P0
pril 20_2001	VIS	I Test: Buchnell-	A grawal/Lectur	e 30

Analog Boundary Module Functions

- One-bit digitizer captures pin voltage and interprets it as digital
- Simultaneously provides one more more of these functions at an analog pin:
 - Connect pin to V_L
 - Connect pin to V_H
 - Connect pin to V_G (reference quality)
 - Connect pin to AB1 (provides current)
 - Connect pin to AB2 (monitors voltage)

EXTEST Instruction

- Can disable or enable each of these connections for each analog pin:
 - Core-disconnect state (disconnected from internal analog circuitry)
 - Connect to V₁
 - Connect to V_H
- Had to be individually pin programmable, because bias voltage pins can never be disconnected, and low impedance *R*'s or *L*'s often cannot be disconnected
- Core-disconnect state often not implemented with a transistor, since that can reduce driver performance

April 20, 2001

ATE External Impedance Measurement with EXTEST

1149.4 Measurement of External Impedance

• (a) Pin 1 voltage measurement

CLAMP and HIGHZ Instructions

- CLAMP Disconnects all pins from cores and freezes analog pins in present state
 Freezes TBIC in present state
 - Keeps circuit quiescent, while V and I are measured in other parts
- HIGHZ Opens core disconnect switch SB
 - Disconnects all test circuits
 - Disables TBIC

April 20, 2001

- Most useful for noise measurements
- Can make f measurements only up to 1 kHz

RUNBIST - operates exactly as in 1149.1 digital standard Analog pins can either mimic HIGHZ or CLAMP instructions SAMPLE / PRELOAD - for Analog pins Digitizes the analog pin voltage Stored as '1' if > V_{TH} otherwise as '0' Stored in boundary register

Isolation of Analog and Digital Cores

- 1149.4 standard requires that a digital boundary module be on each digital line between digital and analog core
 - Only when *INTEST* or *RUNBIST* instructions supported, otherwise can eliminate DBM
- Can use analog boundary module to test digital pins & interconnect with 1149.4

Lecture -Logic Simulation

- What is simulation?
- Design verification
- Circuit modeling
- True-value simulation algorithms
 - Compiled-code simulation
 - Event-driven simulation
- Summary

- Definition: Simulation refers to modeling of a design, its function and performance.
- A software simulator is a computer program; an emulator is a hardware simulator.
- Simulation is used for design verification:
 - Validate assumptions
 - Verify logic
 - Verify performance (timing)
- Types of simulation:
 - Logic or switch level
 - Timing
 - Circuit
 - Fault

Modeling Levels

Modeling level	Circuit description	Signal values	Timing	Application
Function, behavior, RTL	Programming Ianguage-like HDL	0, 1	Clock boundary	Architectural and functional verification
Logic	Connectivity of Boolean gates,	0, 1, X and Z	Zero-delay unit-delay, multiple-	Logic verification
	flip-flops and transistors		delay	and test
Switch	Transistor size and connectivity, node capacitances	0, 1 and X	Zero-delay	Logic verification
Timing	Transistor technology data, connectivity, node capacitances	Analog voltage	Fine-grain timing	Timing verification
Circuit	Tech. Data, active/ passive component	Analog voltage,	Continuous time	Digital timing and analog circuit
	connectivity	current		verification

True-Value Simulation Algorithms

Compiled-code simulation

- Applicable to zero-delay combinational logic
- Also used for cycle-accurate synchronous sequential circuits for logic verification
- Efficient for highly active circuits, but inefficient for low-activity circuits
- High-level (e.g., C language) models can be used

Event-driven simulation

- Only gates or modules with input events are evaluated (*event means a signal change*)
- Delays can be accurately simulated for timing verification
- Efficient for low-activity circuits
- Can be extended for fault simulation

Compiled-Code Algorithm

- Step 1: Levelize combinational logic and encode in a compilable programming language
- Step 2: Initialize internal state variables (flipflops)
- Step 3: For each input vector
 - Set primary input variables
 - Repeat (until steady-state or max. iterations)
 Execute compiled code
 - Report or save computed variables

Summary

- Logic or true-value simulators are essential tools for design verification.
- Verification vectors and expected responses are generated (often manually) from specifications.
- A logic simulator can be implemented using either compiled-code or event-driven method.
- Per vector complexity of a logic simulator is approximately linear in circuit size.
- Modeling level determines the evaluation procedures used in the simulator.

Problem and Motivation

- Fault simulation Problem: Given
 - A circuit
 - A sequence of test vectors
 - A fault model
 - Determine
 - Fault coverage fraction (or percentage) of modeled faults detected by test vectors
 - Set of undetected faults
- Motivation
 - Determine test quality and in turn product quality
 - Find undetected fault targets to improve tests

Fault Simulation Scenario

Circuit model: mixed-level

- Mostly logic with some switch-level for highimpedance (Z) and bidirectional signals
- High-level models (memory, etc.) with pin faults

Signal states: logic

- Two (0, 1) or three (0, 1, X) states for purely Boolean logic circuits
- Four states (0, 1, X, Z) for sequential MOS circuits

Timing:

- Zero-delay for combinational and synchronous circuits
- Mostly unit-delay for circuits with feedback

Fault Simulation Scenario (continued)

Faults:

- Mostly single stuck-at faults
- Sometimes stuck-open, transition, and path-delay faults; analog circuit fault simulators are not yet in common use
- Equivalence fault collapsing of single stuck-at faults
- Fault-dropping -- a fault once detected is dropped from consideration as more vectors are simulated; fault-dropping may be suppressed for diagnosis
- Fault sampling -- a random sample of faults is simulated when the circuit is large

Fault Simulation Algorithms

- Serial
- Parallel
- Deductive
- Concurrent
- Differential

Serial Algorithm

 Algorithm: Simulate fault-free circuit and save responses. Repeat following steps for each fault in the fault list:

- Modify netlist by injecting one fault
- Simulate modified netlist, vector by vector, comparing responses with saved responses
- If response differs, report fault detection and suspend simulation of remaining vectors

Advantages:

- Easy to implement; needs only a true-value simulator, less memory
- Most faults, including analog faults, can be simulated

Deductive Fault Simulation

- One-pass simulation
- Each line k contains a list L_k of faults detectable on k
- Following true-value simulation of each vector, fault lists of all gate output lines are updated using set-theoretic rules, signal values, and gate input fault lists
- PO fault lists provide detection data
- Limitations:
 - Set-theoretic rules difficult to derive for non-Boolean gates
 - Gate delays are difficult to use

Concurrent Fault Simulation

- Event-driven simulation of fault-free circuit and only those parts of the faulty circuit that differ in signal states from the fault-free circuit.
- A list per gate containing copies of the gate from all faulty circuits in which this gate differs. List element contains fault ID, gate input and output values and internal states, if any.
- All events of fault-free and all faulty circuits are implicitly simulated.
- Faults can be simulated in any modeling style or detail supported in true-value simulation (offers most flexibility.)
- Faster than other methods, but uses most memory.

Motivation for Sampling

- Complexity of fault simulation depends on:
 - Number of gates
 - Number of faults
 - Number of vectors
- Complexity of fault simulation with fault sampling depends on:
 - Number of gates
 - Number of vectors

Summary

- Fault simulator is an essential tool for test development.
- Concurrent fault simulation algorithm offers the best choice.
- For restricted class of circuits (combinational and synchronous sequential with only Boolean primitives), differential algorithm can provide better speed and memory efficiency (Section 5.5.6.)
- For large circuits, the accuracy of random fault sampling only depends on the sample size (1,000 to 2,000 faults) and not on the circuit size. The method has significant advantages in reducing CPU time and memory needs of the simulator.